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a b s t r a c t

The stability range of intrinsic point defects in uranium dioxide is determined as a function of tempera-
ture, oxygen partial pressure, and non-stoichiometry. The computational approach integrates high accu-
racy ab initio electronic-structure calculations and thermodynamic analysis supported by experimental
data. In particular, the density functional theory calculations are performed at the level of the spin polar-
ized, generalized gradient approximation and includes the Hubbard U term; as a result they predict the
correct anti-ferromagnetic insulating ground state of uranium oxide. The thermodynamic calculations
enable the effects of system temperature and partial pressure of oxygen on defect formation energy to
be determined. The predicted equilibrium properties and defect formation energies for neutral defect
complexes match trends in the experimental literature quite well. In contrast, the predicted values for
charged complexes are lower than the measured values. The calculations predict that the formation of
oxygen interstitials becomes increasingly difficult as higher temperatures and reducing conditions are
approached.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Uranium dioxide (UO2) is the standard fuel utilized in light
water nuclear reactors. It manifests the fluorite structure at all
temperatures up to its high melting point of �3125 K [1], and
can accommodate substantial quantities of fission products with-
out significant changes in the lattice. It also maintains its useful
properties in a variety of environments, and is chemically stable
[2]. Intrinsic point defects are created during operation, a signifi-
cant number of which persist in the fuel although many recombine
or otherwise annihilate each other. Over time, these defects are
detrimental to the structure and performance of the fuel, since
they form defect clusters that cause fuel swelling and ultimately
change the crystal structure of UO2; this phase change is accompa-
nied by a significant change in volume, which has highly negative
effects on the microstructure and mechanical stability of the fuel
pellet. These intrinsic point defects also affect the transport prop-
erties of the fission gases formed during operation, allowing them
to escape from the fuel matrix and damage the fuel cladding [3].
Thus, an improved knowledge of the stability of these point defects
is required for improved understanding of fuel performance.

The point defects produced include isolated vacancies and
interstitials and defect complexes. These individual point defects
ll rights reserved.
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can form these complexes in a variety of possible charged states
that can influence the relative stability of a cluster. The number
of possible combinations of point defects and charge states is quite
large, especially since UO2 is known to be non-stoichiometric over
a wide range of compositions [4]. Any hyperstoichiometry (UO2+x)
or hypostoichiometry (UO2�x) will stabilize some point defects in
preference to others.

Theoretical calculations are complementary to experimental
methods and are well-positioned to provide fundamental insight
into defect chemistry [5]. This is due to the fact that systems exam-
ined computationally have well-defined compositions and the
influence of each change in condition can be analyzed separately.
With increases in computational resources and both more
powerful and more efficient algorithms, density functional theory
(DFT) can be applied to larger systems and has been successfully
used to examine defect formation in numerous materials [6–10],
including UO2, with greater accuracy. For example, Petit and co-
workers [11–13] used the local density approximation (LDA) and
the generalized gradient approximation (GGA) to predict the ener-
getics associated with point defect formation. Their results agree
well with experimentally determined values [14]. However, their
results do not predict bulk UO2 to be an insulator. This restricts
the applicability of their analysis to neutral systems [12] and
prevents them from exploring the effect of charge on defect
stability.

In addition to being limited to neutral defects, earlier studies
were restricted to small supercell sizes. Petit et al. [13] and Freyss
et al. [12] both used a 24-atom supercell owing to the high
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computational expense of modeling UO2. Despite these limitations,
the importance of their work cannot be underestimated as these
were the first calculations on UO2 and showed that DFT could pre-
dict experimental trends successfully. With recent increases in
computational power, larger system sizes have be considered.
Iwasawa et al. [15] and Gupta et al. [16] each utilized the spin
polarized GGA with Hubbard U correction term (SP-GGA+U) meth-
od for a 96-atom supercell and predicted the correct insulating
structure of bulk UO2. Moreover, they correctly predicted its anti-
ferromagnetic ground state and found that including the correct
magnetic state changes the absolute values of the formation ener-
gies of neutral point defects.

Here, we have extended this earlier work on neutral defects to
include charged point defects in UO2. We use a combination of
experimental thermodynamic data and DFT calculations. The DFT
calculations themselves should give the most accurate results to
date, since they use the currently most sophisticated approxima-
tion within GGA, the PAW method, and 96-atom supercells, as in
the previous work of Gupta et al. Most significantly, a new bridge
is made between the DFT calculations and temperature, oxygen
partial pressure and the charge associated with a defect, which
are key parameters for controlling the type and concentration of
defects. When the current and previous results on defects are con-
sidered as a whole, we see that a coherent and consistent picture of
the energetics of neutral intrinsic defects is emerging. The intro-
duction of charge leads to significant changes in these energies that
vary with Fermi energy. In addition, the predicted defect formation
energies of Schottky and anti-Frenkel defect complexes that con-
sist of charged components are significantly lower than the forma-
tion energies of complexes that consist of neutral components.

The rest of this paper is organized in the following manner: Sec-
tion 2 discusses the computational methods used, including the
details of the determination of the defect formation energies. The
results of the calculations are discussed in Section 3. It begins with
the validation of the adopted approach by considering equilibrium
properties, the electronic structure of UO2, and the phase order of
uranium metal (Section 3.1). Next, the formation energies of neu-
tral point defects and defect complexes are compared with the
findings of previous experimental and theoretical studies (Section
3.2). Because UO2 exists in a wide range of experimental off-stoi-
chiometry, the influence of charge on the relative stability of de-
fects is investigated in Section 3.3. The effects of temperature
and oxygen partial pressure are discussed in Section 3.4. Section
4 gives the conclusions of this work.

2. Computational methodology

2.1. Electronic structure calculations

The DFT calculations were performed with spin polarization by
the projector augmented-wave (PAW) method [17,18] utilizing the
GGA exchange correlation functional as implemented in the Vien-
Table 1
The calculated properties of bulk uranium oxide are shown using different approximations
noted that experimentally, the lattice parameter was reported at room temperature while

Method Lattice paramet

Experiment [1,23] 0.547
Freyss [12] GGA 0.540
Dudarev [21] LMTO-LSDA+U 0.537
Gupta [16] PAW-SP-GGA+U 0.552
This work LDA 0.526

GGA 0.533
LSDA 0.530
SP-GGA 0.542
LSDA+U 0.543
PAW-SP-GGA+U 0.549
na Ab Initio Simulation Package (VASP) [19,20]. The U 6s2 6p6 7s2

5f2 6d2 and O 2s2 2p4 electrons are treated as valence electrons.
We use Dudarev’s simplified scheme (the so called SP-GGA+U
method) [21] to include the effect of the strong correlation of 5f
electrons in uranium. In addition, the values of U = 4.5 eV and
J = 0.54 eV give the best match with experiment for equilibrium
properties (see Table 1). Here the 5f Coulomb correlation energy
(U) was determined with a combination of X-ray photoelectron
spectroscopy and Bremsstrahlung isochromatic spectroscopy [23]
and the onsite exchange energy (J) was determined using X-ray
photoemission spectroscopy [21]. This leads to a Ueff value of
3.96 eV and hence we have chosen this value. These values are sim-
ilar to those previously used by others [15,16,21,22] and also to
experimental measurements [23].

UO2 is experimentally known to be anti-ferromagnetic below
30 K [22], and this state has been taken for our calculations. With
regard to other calculation parameters, we used a 1 � 1 � 1 unit
cell for our initial tests. The Brillouin zone sampling used a
4 � 4 � 4 Monkhorst-Pack k-point mesh [24], and the cut-off en-
ergy for the plane waves was 400 eV. The combination of the above
parameters resulted in a lattice parameter of 0.549 nm and a band
gap of 1.92 eV, both of which are in good agreement with experi-
ment (see Table 1).

A 2 � 2 � 2 unit cell was then used for the pristine and defect-
containing structures for the defect energy calculations. In the case
of the pristine supercell, cell shape and atomic positions were re-
laxed to their equilibrium positions. However, in the case of the
supercells that contained point defects only the atomic positions
were relaxed while the cell shape was kept fixed. This is critical
for defect calculations in the limit of dilute defect concentrations
[25], since allowing the cell volume to relax corresponds to calcu-
lating the lattice constant of a system with a high concentration of
defects (the actual defect concentration within the supercell),
which is not the objective of this work.

2.2. Defect formation energy

The formation energy of a defect as a function of temperature,
partial pressure, defect species a, and charge state q is given as fol-
lows [25]:

DGf ða; q; T; PÞ ¼ Etotalða; qÞ � EtotalðperfectÞ �
X

niliðT; PÞ

þ q½EF þ EV þ DV �; ð1Þ

here Etotal (a, q) is the optimized energy of the supercell containing
the defect a of charged state q, and Etotal (perfect) is the optimized
energy of the perfect supercell. Both these values are obtained di-
rectly from the DFT calculations. In Eq. (1), ni represents the number
of atoms of species i added to (ni > 0) or subtracted from (ni < 0) the
system; li is the chemical potential of species i. The last term is
seen as an electronic chemical potential that represents the change
in energy associated with charged defects. In this term, EF is the Fer-
. These values are compared to published experimental and theoretical data. It is to be
the ab initio calculation data are determined at 0 K.

er (nm) Band gap (eV) Magnetic moment (lB)

2.00 1.74
0.00 0.00
2.10 1.70
1.80 1.94
0.00 0.00
0.00 0.00
0.00 –
0.00 –
1.68 –
1.92 1.93
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mi level in the bulk with reference to the valence band maximum
and EV is the energy of the bulk valence band maximum. Since we
use the bulk value of the valence band maximum to estimate the
energy of a defect supercell, the electrostatic potential of the defec-
tive structure has to be aligned with the bulk value; the term DV
represents this alignment.

The Fermi energy is treated as a variable in this approach and is
dependent upon the charge associated with the cumulative effect
of defects and dopants in the system. A physically meaningful
range around the Fermi energy of pristine UO2 is considered. The
vibrational entropy is neglected; we have previously demonstrated
in the context of TiO2 that such vibrational contributions are small
[26]. The configurational entropy is treated within the ideal solu-
tion model [9].

2.3. Thermodynamic component

The chemical potential li (T, P) is also treated as a variable
in our calculations. Following the approach of He et al.
[26,27], the oxygen chemical potential in UO2 is expressed
as follows:

lOðT; PÞ ¼
1
2

l0
UO2
� l0

U � D0
f ;UO2

h i
þ Dl0

OðTÞ þ
1
2

kBT ln
P

P0 ; ð2Þ
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Fig. 1. Total DOS projected to the U 5f and 6d orbitals as the conduction band and to the U
SP-GGA+U method. The energy on the x axis is with reference to the Fermi level. Notice
where l0
UO2

and l0
U are the chemical potentials of bulk UO2 and ura-

nium metal as calculated with DFT. Uranium metal forms three
phases with increasing temperature [1]. The parameters U and J
were kept constant while calculating the chemical potentials of
these phases. DG0

f ;UO2
is the Gibbs energy per mole of UO2 under

standard conditions obtained from thermodynamic data [28], and
Dl0

O (T) is the change in oxygen chemical potential with change
in temperature obtained from thermodynamic data [28]. Thus, Eq.
(2) allows us to calculate a chemical potential of oxygen that varies
in a physically meaningful way with temperature and oxygen par-
tial pressure; this would not have been possible if this chemical po-
tential had been calculated directly from a DFT calculation of an
oxygen molecule that is, by definition, carried out at zero Kelvin
in perfect vacuum.

Thus, the combination of Eqs. (1) and (2) allows us to consider
the effect of system conditions on the defect formation energies
obtained through DFT calculations.

3. Results and discussion

3.1. Equilibrium properties of bulk UO2 and uranium metal

The first step to validate our approach is to calculate the
lattice parameter and band gap of bulk UO2 using different
y (eV)

UO2 : SP-GGA
Fermi energy  = 0 eV
Band Gap = 0 eV

 (eV)

UO2 :SPGGA+U
Band Gap = 1.92 eV
Experimental = 2eV

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7

5f and O 2p as the valence band for antiferromagnetic UO2 using (a) SP-GGA, or (b)
that the inclusion of spin by itself does not result in a band gap for GGA.
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pseudopotentials. Table 1 compares the lattice parameter, the band
gap and the magnetic moment of the uranium ion from published
computational and experimental work with values calculated
using various approximations within DFT. We find that the agree-
ment with the experimental lattice parameter improves as these
approximations become more sophisticated. For example, pure
LDA and GGA give the poorest agreement with experiment, but
the agreement significantly improves with the addition of spin
polarization. Of all the methods considered, the PAW-SP-GGA+U
method gives the best match with experimental data, even though
it tends to overestimate the lattice parameter slightly. Our results
are similar to the PAW-SP-GGA+U results of Gupta et al. [16]; the
small discrepancy between the two sets of results most probably
arises from the slight differences in the value of Ueff (U � J) used
in the calculations (we used a value of 3.96 eV for Ueff and Gupta
et al. used a value of 4.00; both values fall within the experimen-
tally determined range [23]).

Uranium dioxide is an electrical insulator [23]; however, DFT
predicts it to be a metal unless the 5f electron on site repulsion
is included using in the +U term (refer to Table 1). Fig. 1 shows
the density of states (DOS) plots calculated from PAW-SP-GGA
and PAW-SP-GGA+U calculations. While the former predicts UO2

to be metallic, the latter gives a band gap of 1.92 eV, which is only
0.08 eV smaller than the experimental value. More detailed analy-
sis shows that the valence band consists mainly of U 5f and O 2p
orbitals while the conduction band (Fig. 1(b)) is mainly derived
from 6d and 5f orbitals. In the PAW-SP-GGA method, all of these
orbitals are clustered together leading to the metallic state shown
in Fig. 1(a).

The spin polarization of the U 5f orbital controls the anti-ferro-
magnetic ground state. Our calculations take this effect into ac-
count. The magnetic moment of each uranium ion is predicted to
be 1.93 lB, a value that is about 10% larger than the experimental
value. Of course, the net magnetization is 0 as should be the case
for an anti-ferromagnetic material. This correct description of the
electronic state gives us confidence that this method will be able
to correctly describe charged defects. The different charges associ-
ated with a defect affect the Fermi level (EF) and therefore influ-
ence the relative stability of the charged defect relative to the
neutral defect; this will be discussed in more detail in Section 3.3.

One of the goals of this work is to predict the role of tempera-
ture on point defect formation. Bulk uranium metal exists in three
different phases a, b and c, depending on temperature. The a-
phase is the most stable phase under ambient conditions and has
an orthorhombic crystal structure with four atoms per unit cell.
The b-phase, which is stable at intermediate temperatures, has a
body-centered tetragonal structure; the highest temperature c-
phase has a body-centered cubic structure. The PAW-SP-GGA+U
calculations predict this phase order correctly, as indicated in Table
2. This provides further validation for this approach and is also crit-
ical for predicting the effect of temperature on defect formation
energies from Eq. (1). However, we should point out that we did
not do the corresponding calculations for the other DFT approxi-
mations. These calculations have been carried out previously by
Freyss et al. [12] who also found the correct phase order.
Table 2
Relative stabilities of the three different phases of bulk uranium metal, the
orthorhombic a-phase, the body-centered tetragonal b-phase, and the body-centered
cubic c-phase. Predicting the correct phase order is important for the defect energy
calculations. The SP-GGA+U method was used in these calculations to obtain a
consistent reference state.

Phase Temperature range (K) lU (eV/atom)

a-U Up to 941 �8.08
b-U 941–1049 �7.93
c-U 1049–1408 �7.57
These initial calculations of lattice parameter, band gap, mag-
netic moment and phase order agree well with experiment and
give us confidence that the PAW-SP-GGA+U approach will be
appropriate for defect energy calculations.

3.2. Formation energy of neutral defects

Although DFT has been found to accurately describe the ener-
getics of neutral defects, it is still limited to a relatively small num-
ber of atoms and electrons in the system. UO2 is especially
challenging for DFT because it has a large number of electrons,
strong electron-electron correlations, and is anti-ferromagnetic,
all of which must be included to properly model the material.
Our calculations therefore use a 2 � 2 � 2 supercell, which is effec-
tively the current system-size limit for such calculations. This lim-
itation on system size is important as there could be interactions
between periodic images of the defect in neighboring supercells.
To estimate the effects of the limited supercell size used, defect cal-
culations were also carried out using an empirical potential within
the general utility lattice program (GULP) [29,30]. The advantages
of this approach are that larger supercell sizes can be treated at a
small fraction of the computational cost of DFT calculations. The
calculated values are less accurate than those obtained with DFT,
but the effects of supercell size are not expected to change signif-
icantly with method. We have chosen the Yamada potential [31]
for these GULP calculations. This potential includes partial charges
and a Morse term to model covalent character. It yields more
accurate values for energetics of point defects than most other
potentials [32]. The normalized defect formation energies of the
anti-Frenkel, Frenkel and the Schottky defects are plotted in Fig. 2.

The defect energy converges as we increase the system size. For
the anti-Frenkel and the Schottky defects, the energy is almost con-
verged as the size of the supercell is increased to 2 � 2 � 2. For the
Frenkel defect, the change in the defect energy is �12% between
the 2 � 2 � 2 and 3 � 3 � 3 supercells and changes very little
(�5%) beyond this as the system size increases further. Based on
this analysis, we can anticipate that defect energies calculated
using DFT for the 2 � 2 � 2 should be accurate to about 7%, except
in the case of the Frenkel defect, where the uncertainty is about
10%.

All the point defects whose formation energies have been re-
ported so far in the literature from DFT calculations have been neu-
tral. For the sake of completeness, and to unify the sometimes
dissimilar literature values, we therefore also calculate the forma-
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Fig. 2. Normalized formation energy of neutral defect complexes calculated as a
function of system size by atomic level simulations using an empirical potential
within GULP. The system sizes are multiples of the primitive fluorite cell along the
x, y and z directions. The energies have been normalized with respect to the
5 � 5 � 5 system.



Table 3
Calculated formation energies of neutral point defects compared to reported work using various approximations.

Method Oxygen vacancy (eV) Oxygen interstitial (eV) Uranium vacancy (eV) Uranium interstitial (eV) System size

Freyss [12] GGA 6.1 �2.5 4.8 7.0 2 � 1 � 1
Crocombette [11] LDA 6.7 �2.9 3.3 7.3 2 � 1 � 1
Gupta [16] PAW-SP-GGA+U 5.6 �1.6 6.0 8.2 2 � 2 � 2
Iwasawa [15] PBE-SP-GGA+U 4.46 �0.44 8.45 4.70 2 � 2 � 2
This work PAW-SP-GGA+U 2 � 2 � 2

Ref. state: a-U 4.32 �0.37 8.96 6.12
Ref. state: O2 5.29 �1.34 7.04 8.04
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tion energies associated with neutral uranium and oxygen vacan-
cies and interstitials. We compare our findings to published results
in Table 3. The qualitative trend predicted by all the calculations is
the same. In particular, they all predict that the oxygen interstitial
has negative formation energy. This suggests that UO2 is unstable
in the presence of oxygen vapor, which is consistent with the fact
that UO2 is well-known to be hyperstoichiometric [14]. The large
positive formation energy for O vacancies is also consistent with
the very narrow range of stability of hypostoichiometric UO2.

Although the various methods agree on the order of stability of
the defects, they do not agree on the absolute values of defect for-
mation energies. There could be a number of possible reasons for
this. Some calculations [11,12] used pure GGA as their exchange
correlation functional while others used SP-GGA+U [15,16]. In
the SP-GGA+U methods, a spin polarized, anti-ferromagnetic state
was considered while in the GGA calculations a non-spin polarized
and non-magnetic state was considered. Even when the same ex-
change correlation functional was used, differences in the results
are most likely due to the fact that different types of pseudopoten-
tials were used. For example, Iwasawa [15] used the PBE-SP-
GGA+U pseudopotential while Gupta et al. [16] utilized the
PAW-SP-GGA+U pseudopotential; the latter is expected to be the
more accurate. Importantly, Iwasawa allowed the defect-contain-
ing supercell to relax under constant pressure (approximating
the high defect concentration limit), while Gupta et al. performed
a constant volume calculation that approximates the low concen-
tration limit. We also performed constant volume calculations.
Considering the similarities between our approach and the ap-
proach of Gupta et al., it is not surprising that our defect formation
energies are in reasonable agreement.

Table 3 further indicates that the choice of the reference state
for the defect calculations is important. Freyss et al. [12] used a ref-
erence state of a-uranium for uranium defects and an oxygen mol-
ecule for oxygen defects, where in each case the reference state
chemical potential was calculated directly with DFT. This approach
is valid when one is not considering distributed Schottky defects or
the effect of temperature and pressure on defect formation ener-
gies. In this work, however, our goal is to investigate the effect of
temperature and partial pressure on defect energies. We have
therefore adopted the slightly different approach embodied in
Table 4
The values for Frenkel energies are given for different compounds having the fluorite stru
compounds with the fluorite structure and is not limited to actinide oxides. The formation
and non-interacting.

Method Anti-Frenkel (eV)

Experiment [1,14] 3.0–4.6
Freyss [12] GGA 3.6
Crocombette [11] LDA 3.8
Gupta [16] PAW-SP-GGA+U 4.0
This Work PAW-SP-GGA+U 3.95
CaF2 [1,37] Oxygen diffusion 2.7
PuO2 [1,35] Oxygen diffusion 2.7–2.9
ThO2 [1,35] Oxygen diffusion 2.3–4.7
Eqs. (1) and (2). Thus, when a-uranium is the reference state we
calculate its chemical potential with DFT. We then determine the
chemical potential of oxygen (lO) using Eq. (2), which allows us
to consider the effect of temperature and oxygen partial pressure
on defect formation energies. The justification for this choice is
that temperature and atmospheric pressure have a greater influ-
ence on the chemical potential of gaseous oxygen than on solid
a-uranium. However, if we use an oxygen molecule as the refer-
ence state, calculate its chemical potential with DFT, and obtain
the chemical potential of uranium (lU) from Eq. (2), we obtain
somewhat different values for defect formation energies, as indi-
cated in Table 3. Although this choice of reference state changes
the values of the formation energies, it does not affect the qualita-
tive picture that the formation energy for neutral oxygen intersti-
tials is negative, the formation energy for oxygen vacancies is large,
and those for uranium defects are even larger.

The individual point defect formation energies in Table 3 can be
combined to explore the relative stability of neutral defect com-
plexes in UO2, which can be compared more directly with experi-
ment. Such a calculation corresponds to all of the point defects
being dissociated from one another and at a sufficient distance
apart that they do not interact; this thus ignores association ener-
gies. The experimental values in Table 4 are reported as a range,
indicative of the difficulty associated with measuring absolute val-
ues. The calculated values are in good agreement with experiment
for the anti-Frenkel pair and are quite reasonable for the Schottky
defect. However, the calculated values for the formation energy of
the Frenkel defect are significantly larger than the experimental
value. This might be attributable to the fact that the Frenkel forma-
tion energy was determined indirectly in experiment from oxygen
diffusion data; indeed it has been suggested that the experimen-
tally measured value is an underestimate [32].

A similar calculated and experimental trend is observed in other
fluorites such as PuO2, ThO2 and CaF2 where the anti-Frenkel defect
is found to dominate (Table 4). The calculations were carried out
using empirical potentials and oxygen diffusion experiments were
carried out for the anti-Frenkel formation energies. The data cited
in the table is limited to the dominant defects in each system. The
actual values for the anti-Frenkel defect are also rather similar to
that for UO2.
cture. The comparison indicates that the anti-Frenkel is the dominant defect for all
energies were calculated assuming the individual point defects are far apart, neutral,

Frenkel (eV) Schottky (eV) Melting temperature (K)

8.5–9.6 6.0–7.0 3125
11.8 5.6
10.6 5.8
14.2 7.2
15.08 7.6
– – 1691
– – 2740
– – 3663
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Fig. 4. Calculated defect formation energies for variously charged oxygen and
uranium point defects as function of reference state (a) a-uranium, (b) oxygen
molecule. The empty symbols denote uranium while the filled symbols and other
are oxygen.
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3.3. Effect of charged states

It is usual to think of point defects in metal oxides as being
charged rather than neutral. For example, when an oxygen vacancy
is created it is considered to carry a charge of +2 in traditional Krö-
ger-Vink notation, which represents the loss of two electrons.
However, most calculations of the formation energies of point de-
fects, such as those discussed in the previous section, treat them as
neutral. In this section we explore the effects of charge on the for-
mation energy of the defect. This is done by explicitly applying
charge to the supercell, some of which is localized around the de-
fect, while, as is usual for DFT, most is distributed throughout the
supercell in a manner that is representative of delocalization. The
influence of charge on the defect formation energy is taken into ac-
count in two places in Eq. (1). The first is through the DFT calcula-
tion of the charged, defect-containing supercell and the other is
through the electron chemical potential term, which effectively
shifts the Fermi energy. For example, for an n-type defect the Fermi
level will be near the conduction band, while for a p-type defect it
will be near the valence band. The most stable defect is that for
which the defect energy is lowest for a specific Fermi level.

This is illustrated in Fig. 3, which compares the energies associ-
ated with forming Vx

O;V
�
O; and V��O oxygen vacancies. A transition

can be observed as the Fermi level is increased from the valence
band (0.0 eV) to the conduction band (1.92 eV). Close to the va-
lence band, the +2 charged oxygen vacancy is favored. This in turn
means that oxygen vacancies have a tendency to donate electrons
or behave as an n-type defect. With an increase in Fermi level up to
0.6 eV, the +1 charged oxygen vacancy becomes energetically
favorable. With further increases in the Fermi level, the tendency
of the oxygen vacancy to donate electrons diminishes and the neu-
tral oxygen vacancy becomes dominant as the Fermi level ap-
proaches the conduction band.

The energies of all the individual point defects considered are
shown in Fig. 4 as a function of the position of the Fermi energy.
When considering only the vacancy defects, the +2 charged oxygen
vacancy is predicted to be the most stable defect near the valence
band. This in turn predicts that even in the presence of a uranium
vacancy, which is a p-type defect, the system will still donate elec-
trons. However, as the Fermi level approaches the conduction
band, the �4 charged uranium vacancy becomes increasingly
favorable and remains the dominant defect over the range from
0.3 to 2.0 eV. When considering only differently charged uranium
vacancies, the �4 charged vacancy is the most favorable. The for-
mation energy of this charged vacancy is significantly lower than
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Fig. 3. Stability transitions for the neutral, +1 and +2 charged oxygen vacancies as a
function of Fermi level over the entire band gap. Only the most dominant defect
with reference to a particular Fermi level is shown for clarity.
that of the neutral vacancy. We also examined the effect of charge
on the oxygen interstitial (see Fig. 4). We did not consider the ef-
fect of charge on uranium interstitials because the formation en-
ergy of the Frenkel pair is so high. Finally, we observe that the
�2 charged oxygen interstitial ðO00i Þ dominates over the entire
range of the Fermi energies considered, but increases in stability
as the Fermi energy approaches the conduction band. Using the
same formalism as in Section 3.2, we can simulate the effect of
stoichiometry by choosing different reference states. Choosing a-
uranium as the reference state (Fig. 4(a)) would correspond to a
hypostoichiometric (UO2�x) case while choosing an oxygen mole-
cule as a reference (Fig. 4(b)) corresponds to a hyperstoichiometric
(UO2+x) case. The former reference state would shift the Fermi level
towards the conduction band and the latter would shift it towards
the valence band. We observe that the changes in environmental
conditions do not affect the general conclusions. However, there
are changes in quantitative trends when comparing both cases.
The formation energy of an oxygen vacancy is significantly lower
in the hypostoichiometric case as it is easier to form an oxygen va-
cancy in an oxygen deficient scenario. On the other hand, it be-
comes easier to form an oxygen interstitial and a uranium
vacancy when an oxygen molecule is considered to be the refer-
ence, as both these defects contribute to the hyperstoichiometry
in the system.

This analysis of the relative stabilities and behavior of individ-
ual point defects is informative. However, point defects do not
occur in isolation but rather in combinations, such as Frenkel,
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anti-Frenkel and Schottky complexes [32]. We therefore now com-
pare the energies associated with complexes that consist of either a
combination of neutral or charged defects. Because the complexes
are charge neutral, the position of the Fermi level does not enter
the calculations, even though the energy of the individual charged
defects varies with the Fermi level. The formation energy of the
anti-Frenkel complex is given in Fig. 5. It is clear that the charges
on the individual defects that make up the complex influence its
overall formation energy, an effect previously predicted for TiO2

[26]. Specifically, the combination of an oxygen anti-Frenkel pair
of charged defects ðV��O þ O00i Þ has a lower formation energy than
the corresponding combination of neutral point defects (Vx

O þ Ox).
However, as discussed in Section 3.2, the calculated formation en-
ergy for a Frenkel complex made from neutral defects agrees rea-
sonably well with experimental measurements. Thus the
combination of charged components yields a formation energy that
is considerably lower than the experimental value. The reasons for
this remain unresolved, but could be due in part to the neglect of
association energies or the way in which DFT distributes charge
within the supercell.

A similar trend is seen for the Schottky defects, which are illus-
trated in Fig. 6. The formation energy of the Schottky defect as a
combination of charged vacancies ðV��U þ 2V�OÞ is significantly lower
(�50%) than the combination of neutral vacancies. As for the anti-
Frenkel, the calculated energy of the Schottky defect of neutrals
components also agreed reasonably well with experiment.

The difference in energy between the anti-Frenkel and Schottky
defects is predicted to vary considerably with charge. This is be-
cause the uranium vacancy is affected to a greater degree than
the oxygen point defects (see Fig. 4) when charges associated with
the constituent point defects are considered. This phenomenon can
be seen as a consequence of the strong electron correlation of the
uranium atom, in addition to the factors listed above for the
charged anti-Frenkel defect complex.

3.4. Effect of temperature and oxygen partial pressure

The typical operating conditions of a nuclear reactor span a
variety of temperatures and oxygen partial pressures. The influ-
ence of temperature on the defect formation energies is discussed
first in Fig. 7. The temperature range considered is from 300 to
1400 K at standard atmospheric pressures of 1 atm. This range
was specifically chosen after examining the phase diagram in order
to observe the effect of temperature on the stoichiometry of the
fuel [33]. In general, UO2 is hyperstoichiometric but this tendency
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Fig. 5. Calculated formation energy of the anti-Frenkel defect as a function of the
Fermi level; the formation energies of the neutral complexes are compared to
charged individual defects.
decreases as the temperature increases; hypostoichiometry exists
in measurable quantities only at high temperatures.

The oxygen interstitial is still predicted to be the dominant de-
fect present. However, the formation energy of this defect in-
creases as the temperature increases. This observation in turn
means that the formation energy of an oxygen vacancy should de-
crease with temperature, which is consistent with the narrowing of
the hyperstoichiometric range. This trend is indeed seen in the cal-
culations, where the oxygen point defects are more energetically
favorable than their uranium counterparts. The calculations also
indicate that the uranium defects are affected to a greater degree
by the phase transitions of bulk uranium with temperature. In par-
ticular, the formation energy of the uranium vacancy decreases
while that of the uranium interstitial increases as temperature
increases.

The other significant issue is the equilibrium pressure of oxygen
within the fuel which, to a substantial degree, determines whether
the fuel will oxidize the metallic cladding surrounding it [34]. This
leads to an undesirable thinning of the cladding. In Fig. 8, the effect
of oxygen partial pressure on the defect formation energies at
800 K is shown. This temperature was specifically chosen because
it is the rim temperature of a typical UO2 pellet in an LWR. Addi-
tionally, many experiments have been carried out in the partial
pressure range used here, which allows our predictions to be read-
ily correlated with experimental results [33].
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Fig. 9. Brouwer diagram for UO2+x adopted from Murch et al. [35]. The diagram
assumes that the intrinsic electronic reaction dominates and neglects defects on the
uranium sub-lattice.

68 P. Nerikar et al. / Journal of Nuclear Materials 384 (2009) 61–69
This thermodynamic analysis predicts the oxygen interstitial to
be the most stable point defect. However, it becomes increasingly
difficult to form this defect as the partial pressure is reduced. This
is expected as at highly reduced conditions there is little free oxy-
gen in the system and the tendency to lose oxygen to the atmo-
sphere is significant. On the other hand, it becomes energetically
feasible to form oxygen vacancies in reducing conditions. This con-
trasting nature of oxygen can be understood on the basis of the
Brouwer’s diagram for UO2 in Fig 9 where the concentration of de-
fects is plotted as a function of oxygen partial pressure [35]. As
indicated in the figure, the concentration of oxygen vacancies is
proportional to p�1=2

O2
which accounts for their being energetically
unfavorable at high oxygen partial pressures. The decrease in oxy-
gen vacancy concentration increases the uranium vacancy concen-
tration. Furthermore, the formation energy of the cation vacancy
drops dramatically as the oxygen partial pressure increases. This
is due to the fact that Schottky equilibrium [36] or charge neutral-
ity through vacancies must be maintained in the system.

4. Conclusions

In this work, a combined electronic-structure DFT and thermo-
dynamic approach has been used to predict the stability of intrinsic
point defects in UO2. These calculations were supplemented by
empirical potential-calculations using larger supercells. The elec-
tronic structure and equilibrium structure of UO2 are well repro-
duced. The formation energies of individual point defects are
seen to depend on the exchange-correlation functional chosen
within the DFT calculations, whether the defect-containing super-
cell was allowed to relax or not, and on the chosen reference state
chemical potential. The DFT and empirical potential calculated for-
mation energies for neutral defect complexes match both qualita-
tive and quantative trends reported in the literature in that the
oxygen Frenkel pair is predicted to be the most stable defect
overall.

The stability of charged defects was also analyzed by taking into
account the various charge states they are known to possess. The
+2 charged oxygen vacancy was predicted to be dominant when
the Fermi level is near the valence band, but the �4 charged ura-
nium vacancy was predicted to become the energetically favored
defect as the Fermi level moves towards the conduction band.
The stability of the anti-Frenkel and Schottky defect complexes de-
pend to a significant degree on whether the individual point de-
fects that made them up were charged or neutral. The formation
energies of the neutral complexes agree better with the experi-
mental values than the energies of the charged complexes for rea-
sons that are, at this point, unresolved.

The influence of temperature and partial pressure was also ana-
lyzed. In general, the oxygen interstitial remains dominant over the
entire range of oxygen partial pressures; however, it becomes
increasingly difficult to form these defects as we approach higher
temperatures and reducing conditions. These predictions are con-
sistent with experimental observations and measurements.
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